Муниципальное бюджетное общеобразовательное учреждение "Чукальская основная общеобразовательная школа"
Республика Мордовия, Ардатовский район, село Чукалы
  • Алгебра 7 класс.
    Алгебра 7 класс
    Алгебра
    7-7 класс
    Автор
    Ю. Н. Макарычев
    Класс
    7-7 класс
    Предмет
    Алгебра
    Программа
    Рабочие программы. Предметная линия учебников Ю. Н. Макарычева и других. 7-9 классы: пособие для учителей общеобразоват. организаций / Н. Г. Миндюк.
    Издательство
    Просвещение
    Вид материала
    учебник

    Пояснительная записка

    Рабочая программа по алгебре составлена на основе следующих нормативно- правовых документов:

    Федеральный государственный стандарт основного общего образования, утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897.

    Закон Российской Федерации «Об образовании» (статья 9)

    Алгебра. Рабочие программы. Предметная линия учебников Ю. Н. Макарычева и других. 7-9 классы: пособие для учителей общеобразоват. организаций / Н. Г. Миндюк. – 2-е изд., дораб. – М. : Просвещение, 2014. – 32с.

    Рабочая программа рассчитана на 102 часа – 3 часа в неделю, рекомендованный Министерством образования РФ с учетом актуальных положений ФГОС нового поколения.

    Рабочая программа основного общего образования по ал­гебре составлена на основе Фундаментального ядра содержа­ния общего образования и Требований к результатам освое­ния основной общеобразовательной программы основного общего образования, представленных в Федеральном государ­ственном образовательном стандарте общего образования. В ней также учитываются основные идеи и положения Про­граммы развития и формирования универсальных учебных действий для основного общего образования.

    Сознательное овладение учащимися системой алгебраиче­ских знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

    Практическая значимость школьного курса алгебры обу­словлена тем, что её объектом являются количественные от­ношения действительного мира, пространственные формы. Математическая подготовка необходима для понимания принципов устройства и исполь­зования современной техники, восприятия научных и техни­ческих понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

    Арифметика, алгебра и геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В пер­вую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышле­ния учащихся при обучении математике, алгебре, геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и на­выки арифметического, алгебраического и геометрического характера необходимы для трудовой и профессиональной подготовки школьников.

    Развитие у учащихся правильных представлений о сущности и происхождении арифметических, алгебраических и геометрических абстракций, соотношении ре­ального и идеального, характере отражения математической на­укой явлений и процессов реального мира, месте алгебры и геометрии в си­стеме наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

    Требуя от учащихся умственных и волевых усилий, кон­центрации внимания, активности воображения, математи­ка развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятель­ность, ответственность, трудолюбие, дисциплину и критич­ность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать само­стоятельные решения. Активное использование и решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.

    Изучение математики позволяет формиро­вать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критиче­скую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпыва­юще, лаконично и ёмко, приобретают навыки чёткого, акку­ратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса математики являет­ся развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёт­кие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию матема­тики, формируя понимание красоты и изящества математи­ческих рассуждений, математика вносит значительный вклад в эстетическое воспитание учащихся.

    Общая характеристика учебного предмета

    В курсе алгебры 7 класса можно выделить следующие основные содержательные линии: арифметика, алгебра, функции.

    Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

    Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

    Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

    Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели ля описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

    .Задачи:

    - овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

    - интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

    - формирование представлений об идеях и методах математики как универсального языка науки и техники, средства и моделирования явлений и процессов, устойчивого интереса к предмету;

    - воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

    - выявление и формирование математических и творческих способностей.

    Описание места учебного предмета в учебном плане

    Описание места учебного предмета, курса в учебном плане

    Согласно федеральному базисному учебному плану для общеобразовательнх учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю с 5 по 9 класс. Рабочая программа для 7 класса рассчитана на 3 часа в неделю по алгебре и 2 часа в неделю по геометрии, общий объем 170 часов. Учитывая важность и объективную трудность этого предмета, педагог может увеличить учебное время до 6 и более уроков в неделю за счет школьного или регионального компонентов.

    Структура курса.

    Курс имеет следующую структуру:

    Раздел «Числа и вычисления» включает в себя работу с различными терминами, связанные с различными видами чисел и способами их записи: целые, дробные, десятичная дробь, положительные и отрицательные числа и т.д. Эта работа предполагает следующих умений: переходить от одной формы записи чисел к другой (например, представлять десятичную дробь в виде обыкновенной); исследовать ситуацию, требующую сравнения чисел, их упорядочения; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой; планировать отношение задачи; действовать по заданному и самостоятельно составленному плану решения; составлять и решать пропорции, решать основные задачи на дроби, проценты.

    Раздел «Выражения и их преобразования» предусматривает ознакомление с терминами «выражение» и «тождественное преобразование», формирует понятие их в тексте и в речи учителя. Ведется работа по составлению несложных буквенных выражений и формул, осуществляются в выражениях и формулах числовые подстановки и выполнение соответствующих вычислений, начинается формирование умений выражать одну переменную через другую.

    В разделе «Уравнения и неравенства» формируется понимание, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики. Ведется работа над правильным употребление терминов «уравнение» и «корень уравнения», решением простейших линейных уравнений и решением текстовых задач с помощью составлений уравнений.

    В разделе «Функции» формируется понятие, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами. Ведется работа по интерпретированию в несложных случаях в графиках реальных зависимостей между величинами при помощи ответов на поставленные вопросы.

    Личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса

    Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

    личностные:

    1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

    2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

    3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

    4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

    5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

    6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

    7) умения контролировать процесс и результат учебной математической деятельности;

    8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

    метапредметные:

    1) способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

    2) умения осуществлять контроль по образцу и вносить необходимые коррективы;

    3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

    4) умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

    5) умения создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

    6) развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

    7) формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

    8) первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

    9) развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

    10) умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

    11) умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

    12) умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

    13) понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

    14) умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

    15) способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

    предметные:

    1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, ис-пользовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

    2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

    3) умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

    4) умения пользоваться изученными математическими формулами;

    5) знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

    6) умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

    Содержание учебного предмета

    (3 часа в неделю 102 часа)

    1. Выражения, тождества, уравнения

    Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

    Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

    Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

    Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

    В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки   

    и дается понятие о двойных неравенствах.

    При рассмотрении преобразований выражений формально-оперативные умения остаются на том, же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

    Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

    Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическими, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

    2. Функции

    Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

    Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

    Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

    Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где k¹0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kх + b

    Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

    3. Степень с натуральным показателем

    Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

    Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

    В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств аm • аn = аm +n , аm : аn = аm-n где m > n, (аm)п = аmn, (аb)п = аnbn учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

    Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2 : график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

    Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.

    4. Многочлены

    Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

    Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

    Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

    Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

    Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

    В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

    5. Формулы сокращенного умножения

    Формулы (а ± b)2 = а2 ± 2аb + b2, (а ± b)3 = а3 ± 3а2Ь + Заb2 ± b3, (а ± b) (а2 ± аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

    Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

    В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - Ь2, (а ± b)2 = а2 +± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

    Наряду с указанными рассматриваются также формулы (a ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 = (а + b) (а2 ± аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

    В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

    6. Системы линейных уравнений

    Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

    Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

    Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

    Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

    Формируется умение строить график уравнения а + bу = с, где а ¹ 0 или Ь ¹ 0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.

    Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

    7. Повторение

    Тематическое планирование с определением основных видов учебной деятельности

    Алгебра

    7 класс

    Основное содержание по темам

    Характеристика основных видов деятельности ученика

    Глава I. Выражения, тождества, уравнения - 22 часа

    Выражения

    Преобразование выражений

    Контрольная работа №1

    Уравнения с одной переменной

    Статистические характеристики

    Контрольная работа №2

    Находить значения числовых выражений, а также выра­жений с переменными при указанных значениях пере­менных.

    Использовать знаки >,<, считать и состав­лять двойные неравенства.

    Выполнять простейшие преобразования выражений: при­водить подобные слагаемые, раскрывать скобки в сум­ме или разности выражений.

    Решать уравнения вида ах = b при различных значени­ях а и b, а также несложные уравнения, сводящиеся к ним.

    Использовать аппарат уравнений для решения тексто­вых задач, интерпретировать результат.

    Использовать простейшие статистические характеристики (среднее арифметическое, размах, мода, медиана) для анализа ряда данных в несложных ситуациях

    Глава II. Функции – 11 часов

    Функции и их графики

    Линейная функция

    Контрольная работа №3

    Вычислять значения функции, заданной формулой, со­ставлять таблицы значений функции.

    По графику функ­ции находить значение функции по известному значе­нию аргумента и решать обратную задачу.

    Строить гра­фики прямой пропорциональности и линейной функции, описывать свойства этих функций.

    Понимать, как влия­ет знак коэффициента к на расположение в координат­ной плоскости графика функции у = кх, где к ≠ 0, как зависит от значений к и b взаимное расположение гра­фиков двух функций вида у=кх + b.

    Интерпретировать графики реальных зависимостей, описываемых форму­лами вида у =кх, где к≠0, у=кх+Ь

    Глава III. Степень с натуральным показателем – 11 часов

    Степень и её свойства

    Одночлены

    Контрольная работа №4

    Вычислять значения выражений вида аn, где а — про­извольное число, п — натуральное число, устно и пись­менно, а также с помощью калькулятора.

    Формулиро­вать, записывать в символической форме и обосновы­вать свойства степени с натуральным показателем.

    Применять свойства степени для преобразования выра­жений.

    Выполнять умножение одночленов и

    возведение одночленов в степень.

    Строить графики функций у = х2 и у = х3. Решать графически уравнения х2 = кх + Ь, х3 = кх + Ь, где к и b — некоторые числа

    Глава IV. Многочлены – 17 часов

    Сумма и разность многочленов

    Произведение одночлена и многочлена

    Контрольная работа №5

    Произведение многочленов

    Контрольная работа №6

    Записывать многочлен в стандартном виде, определять степень многочлена.

    Выполнять сложение и вычитание многочленов, умножение одночлена на многочлен и многочлена на многочлен.

    Выполнять разложение много­членов на множители, используя вынесение множителя за скобки и способ группировки.

    Применять действия с многочленами при решении разнообразных задач, в частности при решении текстовых задач с помощью уравнений­

    Глава V. Формулы сокращённого умножения – 19 часов

    Квадрат суммы и квадрат разности

    Разность квадратов. Сумма и разность кубов

    Контрольная работа №7

    Преобразование целых выражений

    Контрольная работа №8

    Доказывать справедливость формул сокращённого умножения, применять их в преобразованиях целых вы­ражений в многочлены, а также для разложения мно­гочленов на множители.

    Использовать различные пре­образования целых выражений при решении уравнений, доказательстве тождеств, в задачах на делимость, в вы­числении значений некоторых выражений с помощью калькулятора

    Глава VI. Системы линейных уравнений – 16 часов Повторение – 6 часов

    Линейные уравнения с двумя переменными и их системы

    Решение систем линейных уравнений

    Контрольная работа №9

    Определять, является ли пара чисел решением данно­го уравнения с двумя переменными.

    Находить путём пе­ребора целые решения линейного уравнения с двумя переменными.

    Строить график уравнения ах + by = с, где а ≠ 0 или b ≠ 0.

    Решать графическим способом си­стемы линейных уравнений с двумя переменными.

    При­менять способ подстановки и способ сложения при ре­шении систем линейных уравнений с двумя переменны­ми.

    Решать текстовые задачи, используя в качестве алгебраической модели систему уравнений.

    Интерпре­тировать результат, полученный при решении системы

     

    Планируемые результаты изучения учебного курса (алгебра)

    В результате изучения алгебры, ученик должен:

    Уметь

    составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

    выполнять основные действия со степенями с натуральными показателями и с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

    решать линейные уравнения, системы двух линейных уравнений и несложные нелинейные системы;

    решать линейные неравенства с одной переменной и их системы;

    решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

    изображать числа точками на координатной прямой;

    определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

    находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

    определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

    описывать свойства изученных функций, строить их графики;

    Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

    выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

    моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

    описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

    интерпретации графиков реальных зависимостей между величинами.

    Сайт использует сервис веб-аналитики Яндекс Метрика с помощью технологии «cookie». Это позволяет нам анализировать взаимодействие посетителей с сайтом и делать его лучше. Продолжая пользоваться сайтом, вы соглашаетесь с использованием файлов cookie